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Abstract 

Let p(A,e,E) be the probability that a measurement of an observable A for the system 
in a state e will lead to a value in a Borel set E. An experimental function is a function 
f f rom the set of all states Y into [0,1] for which there are an observable A and a Borel 
set E such that f(c0 =p(A,c<,E) for all e ~ 5:. A sequence fl, f2 .... of experimental 
functions is said to be orthogonal if there is an experimental function g such that 
g +f~ +f2 + ... = 1, and it is said to be pairwise orthogonal iff~ +fs < 1 for i r  It is 
shown that if we assume both notions to be equivalent then the set L of all experimental 
functions is an orthocomplemented partially ordered set with respect to the natural order 
of real functions with the complementationf' = 1 - f, each observable A can be identified 
with an L-valued measure Pa, each state e can be identified with a probability measure 
m~ on L and we have p(A,~,E) = m~ o ltA(E). Thus we obtain the abstract setting of 
axiomatic quantum mechanics as a consequence of a single postulate. 

1. Introduction 

Fol lowing  Mackey  (1963) we assume that  with each quan tum mechanical  
system F we can associate the set o f  all observables d~, the set o f  all states 
50, and a funct ion p :  d) x 5 ~ x ~ ( R )  --> [0,1], where ~ ( R )  is the set o f  all 
Borel  subsets o f  the real line R. The funct ion p ( A , e , E )  is interpreted as 
the probabi l i ty  that  a measurement  o f  the observable A for  the system in 
the state will lead to a value in the Borel set E. Consequently,  for  each 
fixed A and each fixed ~ the map  E-+p(A,o~,E)  is a probabi l i ty  measure 
on N(R).  The funct ion p with this proper ty  will be called the probabi l i ty  
funct ion o f  our  system. The aim of  a physical theory is to throw p(A,  ~, E)  
into a concrete fo rm that  will a l low us to calculate the values o f  p and 
the mean  value o f  A in every state c~. In quan tum mechanics an observable 
A determines a project ion-valued measure  pA in a Hi lber t  space ~"  and 
thus by the spectral theorem a self-adjoint opera tor  (which is denoted also 
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by A), every (pure) state can be identified with a unit vector in J r ,  and 
the values o fp  can be calculated from the formula 

p(A, ~, E) = ( e a  ~, ~) 

The mean value of A in the state ~ is then 

exp, (A) ~- (A~, ~) 

As an intermediate step, before making the assumption about the 
existence of  the Hilbert space ~ associated with p we can assume that 
there is an orthocomplemented partially ordered set L (called the logic 
of p) such that each observable A corresponds to an L-valued measure #a, 
each state ~ corresponds to a probability measure m~ on L, and p(A, ~,E) = 
m, o #A(E) for all E ~ ~'(R). To pass to the Hilbert space formalism it 
suffices to assume that L is isomorphic to the orthocomplemented partially 
ordered set of orthogonal projections on a Hilbert space J~,~. On the other 
hand, if we assume that L is the Boolean algebra of  the Borel subsets of 
the phase space for our system (postulating that the phase space exists), 
we get the formalism of classical statistical mechanics. It turns out that 
several important theorems about observables and states in quantum 
mechanics can be proved already in this abstract setting of the ortho- 
complemented partially ordered set L without involving the Hilbert space 
~f. Moreover, an abstract system of observables and states associated 
with L is interesting on its own and can be investigated from a pure mathe- 
matical point of view. The theory developed then is frequently called 
axiomatic quantum mechanics. A full exposition of the present state of 
axiomatic quantum mechanics can be found in a paper of Gudder (1970). 

Mackey (1963) showed that the existence of an orthocomplemented 
partially ordered set associated with the probability function p can be 
deduced from a set of seven assumptions (called axioms) which admit 
some physical interpretation. In the present paper we would like to show 
that the existence of L is in fact a consequence of a single postulate which 
admits a very simple interpretation. This postulate is strongly related to 
the orthogonality properties of L and indicates on orthogonality as a basic 
notion in any physical theory. 

2. The Orthogonality Postulate 

Before we state our main theorem we need to introduce some auxiliary 
notions. 

Let 0 and 5g be respectively the set of all observables and the set of all 
states of a system F and let p: (_9 • 50 • ~(R) -+ [0,1] be the probability 
function for F. We may form the set of all pairs (A,E) where A ~ d~ and 
E ~ ( R ) .  Every pair (A,E) will be called an experimental pair. In the 
set g of all experimental pairs we introduce an equivalence relation defined 
by (A 1, EI) ~ (A2, Ez) if and only if for every ~ ~ 5~p(Aa,c~,E1) = p(A2,cz, E2). 
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The set of all equivalence classes Lo = g/~  will be called the logic of p, 
and the members of Lo, denoted by I(A,E)t, will be called experimental 
propositions. Every experimental proposition [(A, E) I uniquely determines 
a real-valued functionf~,E from the set of all states 5`, into [0,1] defined 
by fA, e(~)=p(A,c~,E) for all e ~ 5`,. In fact, we have (A1,E1)~ (A2,E2) 
if  and only iffa~, q =fA2, ~2" The set of all such functions will be denoted 
by L, i.e. L = {fA,~: A ~ (9, E c  N(R)}, and members of L will be called 
experimental functions induced by p. We see that there is a one-to-one 
correspondence between experimental propositions and experimental 
functions, and consequently L may also be called the logic ofp .  If f is an 
experimental function corresponding to the experimental proposition 
e = I(A, E)[, then the value o f f  at each c~ ~ 5 ~ f (c0, can be interpreted as 
the probability that e will turn out to be true in the state cz (i.e. the probability 
that a measurement of A in the state c~ will lead to a value in E). 

Experimental functions are real-valued functions and we can operate 
on them as on real functions. If  f ,  g c L, then f +  g and f -  g denote respec- 
tively the funct ionsf  (x) + g(x) a n d f  (x) - g(x ) , f  <~ g means t h a t f  (x) < g(x) 
for all x s 5`,. We can also consider infinite sums of experimental functions 
f l  +f2  + . . .  ;namely, g = f l  +f2  + . . .  means that the seriesfl(e) +f2(e) + . . .  
is convergent for each e ~ 5" and g (e )= f l ( e )+ f2 (c0  + .... 0 and 1 will 
denote the functions (with domain 5`,) equal to 0 and to 1, respectively. 

Definition 1. A sequence (finite or countable) of  experimental functions 
f l ,  fz  . . . .  ~ L, is said to be orthogonal if there is an experimental function 
g ~ L such that g + f l  +fz  + . . .  = 1. 

The reason for the use of this terminology will become clear in the sequel 
where we show that a sequence orthogonal in the sense of Definition 1 is 
orthogonal in the usual sense as a subset of some orthocomplemented 
partially ordered set. At this moment, however, the orthogonality is to be 
understood only formally as defined above. 

Definition 2. A sequence (finite or countable) of experimental functions 
f l , f2  .... eL ,  is said to be pairwise orthogonal if f~ + f j  < 1 for i C j, 
i , j = l ; 2  . . . . .  

A one-element sequence is by definition pairwise orthogonal. 
Observe that an orthogonal sequence is pairwise orthogonal but in 

general not conversely. If  in an orthogonal sequencefa,f2 . . . .  one function, 
say f,, takes the value 1 at some ~ e 5o,f~(~) = 1, then all the other functions 
necessarily take the value 0 at this, i.e. fs(~ ) = 0 f o r j  # i. We obtain exactly 
the same conclusion for a pairwise orthogonal sequence. Let e,, ez . . . .  
be the experimental propositions corresponding to an orthogonal sequence 
of  experimental functions f , ,  f2 .. . . .  If  some proposition e~ has the proba- 
bility I in a state ~, then all the others have probability 0 in this state. 
Loosely speaking this means that if the proposition e~ is true in the state ~, 
then all the others are false in that state. We get exactly the same inter- 
pretation for a sequence of experimental propositions whose corresponding 
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sequence of experimental function is pairwise orthogonal. We see that in 
this interpretation both notions (orthogonality and pairwise orthogonality) 
are equivalent. This of course does not mean that both definitions are 
equivalent. However, the discussion above strongly supports the hypothesis 
that it is reasonable to assume that both notions are equivalent in any 
physical theory. We will show that such an assumption is equivalent to 
assuming that the set of experimental functions (and consequently the set 
of experimental propositions) is in a natural way an orthocomplemented 
partially ordered set. This means that both notions are equivalent, at 
least in such theories as classical mechanics and quantum mechanics. 
Moreover, this assumption agrees with the general understanding of 
orthogonality in mathematics, where orthogonality is always understood 
as pairwise orthogonality (independently of  how this last term is defined). 
Accordingly, we make the following very plausible postulate. 

The Orthogonality Postulate. A sequence of experimental functions is 
orthogonal if and only if it is pairwise orthogonal. 

We shall now investigate the consequences of  this postulate. 
Theorem. Let p: @ • ~9 ~ • ~(R) -+ [0,1] be a probability function for 

which the orthogonality postulate holds. Then the set L of experimental 
functions induced by p (the logic of p) is an orthocomplemented partially 
ordered set with respect to the natural order of real functions (f~< g if 
and only if f (x) ~< g(x) for all x ~ ~9 ~) with the complementat ionf" = 1 - f .  
Each observable A ~ @ determines a uniqueL-valued measure/~A: ~(R) ~ L 
defined by #A(E)=fA, E for all E ~ ~(R), and each state a determines a 
unique probability measure m~ on L m~: L -~ [0,1] defined by m~(f) = f ( ~ )  
for all f ~ L .  The family of  L-valued measures corresponding to all 
observables {#a: A ~ (9} is surjective, and the family of  probability measures 
corresponding to all states {m~: ~ ~ 50} is full. For each A ~ (9, each a ~ S, 
and each E E ~(R) we have 

p(A, a, E) = m~ o 12A(E) 

Conversely, if L is an arbitrary orthocomplemented partially ordered set 
admitting a full set of  probability measures 5 ~ and (9 is a surjective set of 
L-valued measures, then the function p from (9 • 5 e x N(R) into [0,1] 
defined by p(A,c~,E)=o~oA(E) for all A~(9, c~ESe, E~N(R), is a 
probability function satisfying the orthogonality postulate and the logic 
o f p  is isomorphic to L. 

We see that the notion of an orthocomplemented partially ordered set 
admitting a full set of  probability measures is equivalent to the notion 
of a probability function satisfying the orthogonality postulate. Since 
we are interested only in calculating the values of p, observables of a 
physical system can be identified with L-valued measures and states with 
probability measures on L for a suitable L. 

Before we prove our theorem we shall recall the definitions of the notions 
appearing in it. The terminology is consistent with Mackey (1963). 
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A partially ordered set (L,<) is said to be orthocomplemented if there 
is a mapping ' of  L into L such that 

1 ~ f "  = f f o r  a l l f e L .  
20 f <  g implies g' <f" for all f ,  g ~ L. 
30 I f f l ,  fz, . . ,  is a sequence of members of L for whichf~ < f j  for i # j ,  

then the least upper boundf~ U f2 O ... exists in (L,<). 
40 f U f '  =g 0 g' for all f ,  g e L  ( f U f '  will be denoted by 1). 

50 f <  g implies g = f  U ( f  U g')'. 

In a lattice property 50 is equivalent to orthomodularity (see Maeda & 
Maeda, 1970). Accordingly, a partially ordered set satisfying conditions 
l~ o should be called an orthomodular ~r-orthocomplemented partially 
ordered set. For  simplicity, however, we stick to the terminology used by 
Mackey. 

We denote f <  g'  b y f  _[_ g. 

Let L be an orthocomplemented partially ordered set. A mapping 
#: ~(R)  -+ L is said to be an L-valued measure if E N F = ;~ implies 
#(E) _I_/~(F) and #(E~ U E2 U. . . )  = #(El) U I~(Ez) U . . .  whenever E~ N E i 
= ~ for i # j ,  i, j = 1, 2 .. . . .  A family {/~t: t e T} of  L-valued measures is 
said to be surjective if for each f e  L there are t ~ T and E ~ N'(R) such 
that #t(E) = f .  

A mapping m: L -+ [0,1 ] is said to be a probability measure on L if 
m(1) = 1 and m(fl  U f2 O ...) = m(fO + m(f2) +. . .  whenever f i  _Lfj  for 
i 4 = j ,  i, j = l, 2 . . . . .  A family {m~ : a ~ 5 r of probability measures on L 
is said to be full if m,( f )  <~ m,(g) for all c, e 5 ~ implies f <  g. Note that 
not every orthomodular poser admits a full set of probability measures. 
There are examples of orthomodular partially ordered sets (even lattices) 
which admit no probability measures at all (Meyer, 1970; Greechie, 1971). 

Proof of the Theorem. We first show that the orthogonality postulate 
implies that L has the following three properties: 

(i) The zero function belongs to L. 

(ii) f e  L implies 1 - f ~  L. 
(iii) For  any sequence f l ,  f2 . . . .  of  members of L satisfying f~ + f ]  < 1 

for i # j  we have f l  +fz +. . .  ~ L. 
In fact, since a one-element sequence is by definition pairwise orthogonal, 

by the orthogonality postulate it is orthogonal; that is, for each f e L there 
is g e L such that f +  g = 1. Consequently, 1 - f b e l o n g s  to L and (ii) holds. 
I f f ~  L, then the sequence f ,  1 - f  is pairwise orthogonal, consequently it 
is orthogonal and there is g e L such that g + f +  (1 - f )  = 1. This implies 
that g - 0 belongs to L and (i) holds. Finally, a sequencef~,f2 . . . .  satisfying 
f~ + f j  ~< 1 for i # j  is orthogonal by the postulate and there is g e L such 
that g + f l  +f2  + . . .  = 1. This implies f~ +f2  + . . .  = 1 - g e L. Hence 
(iii) also holds. 
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We now make L into a partially ordered set by defining f~< g if and 
only i f f  (~) ~< g(c~) for all ~ ~ 5 e, and define a m a p '  of L into L b y f '  = 1 - f  
for a l l f ~ L .  It is evident that (L,%')  satisfies conditions 1 ~ and 2 ~ We 
shall prove 3 ~ Observe first that taking in (iii)f,+l =fn+z = . - .  = 0 we see 
that for any finite sequence fa, f2 . . . . .  f ,  satisfying fi  + f j  ~< 1 for i r  we 
have f l  +f2  + ... + f ,  ~L. We have in L f l  _k f2 equivalent tof~ +f2  ~< 1. 
We first prove that for f~ •  f l  U f2 exists and f~ Ufz = f l  +fz .  We 
h a v e f = f l  +f2 sL .  Clearly f~ <~fandfz <~f Let g EL, f~ <<.g andfz  ~<g. 
This means that f~ +g'<~ 1 andfz  +g'<~ 1. Hence the sequence f~, fz, g', 
0, 0 . . . .  satisfies the assumption in (iii) and consequently f~ +f2  + g' e L, 
which implies f t  +f2  + g' ~< 1, i.e. f~ +f2  ~< g. Thus j~< g, which implies 
f~ Ufz = f .  We now proceed by induction. Assume that for any sequence 
oflengthn f~,fz ..... f,,f~ eL,  satisfyingf~ + f j  ~< I f o r / C j ,  f~ U fz U ... U f ,  
exists and f~ U f2 U . . .  Uf ,  = f l  + f z  + . . .  + f , .  Let f l ,  fz . . . . .  f , ,  f,+~ be 
any sequence of members of L where f~ + f j  ~< 1 for i Cj .  By (iii) we infer 
that f~ + f z  + . . .  +f,+~ E L. By the induction hypothesis f = f x  +f2 +. . .  
+fn =f~ Ufz U ... Uf, .  Consequent lyf+fn+l  ~< 1. By the part just proved, 
fUf ,+l  =f+f ,+l .  Hence f l  U f2 U . . .  Ufn+l = f l  +f2  + . . .  +f,+x. Now 
let f~, f2 . . . .  be a sequence of  members of L where f~ + f j  ~< 1 for i r 
By (iii) we have f = f l  +fz +. . .  eL.  Clearly f~ < f .  We must show that 
f = f l  U f2 U .... Letfi <g ,  i =  1,2 . . . .  forsomeg~L. Thenfl U f2 U ... U f ,  
exists for n = 1, 2 . . . .  and f~ Ufz U ... Uf ,  = f l  + fz  + . . .  + f , .  Conse- 
quently f~ +f2 +. . .  +f ,  <<-g for n = 1, 2 .. . . .  Hence f~ + fz  + . . .  ~< g, 
i.e.f<~g. This shows that f = f ~  U f2 U ... exists and equals f~ + f 2 +  .... 
Hence 3 0 holds. For  a n y f E  L we have f +  (1 - f )  ~< 1, i.e. f I f ' .  By the 
part just proved, f U f "  exists in L and f U f "  = f + f "  = 1 + (1 - f )  = 1. 
So 4 0 holds. To show that 5 0 also holds, letf~< g,f ,  g e L. This implies that 
f +  (1 - g )  ~< 1 a n d f U  g' = f +  g'  = f +  (1 - g ) .  Consequently, h = ( f U  g')" 
= l - ( l + f - g ) = g - f e L .  Hence f + h = g ~ < l .  Hence f_ l_h  and 
f U h = f + h .  We see that f U  ( f U g ' ) ' = f + ( g - f ) = g ,  which means 
that 5 0 holds. Thus (L,<, ' )  is an orthocomplemented partially ordered set. 

For  each c~ e 5 ~ the mapping rn~ of L into [0, 1] is a probability measure. 
We have by definition rn~(f) = f ( e )  for all c~ e 5 a. Consequently, rn~(1) = 
1(~)=1,  and for f~ , f z  .... eL,  withf~ 2_f~ for i # j  the least upper 
bound h =f~ Ufz U ... exists and h =fa  + fa  + .... This implies m~(fl U 
fz U ...) = m~(h) = h(e) =fl(~)  + fz(e) +. . .  = rn,(f~) + m,(fz) + .... which 
shows that rn~ is a probability measure on L. The family {m,: c~ e 5 ~ is 
full, since rn~(f)<~m~(g) for all e e 5  a means that f(e)<~g(c 0 for all 
c~ ~ 5 a, which coincides with the definition of the order in L, 

For  each A e ~, the mapping PA of N(R) into L defined by p~(E) =fa, 
for all E ~ ~(R) is an L-valued measure. In fact, E (3 F =  ;~ implies 
p(A, c~, E U F) = p(A, c~, E) + p(A, ~, F) for all ~ e 5 e (p is a probability 
function), so that fa,g +fa.v ~< 1 (recall that fA,~(CO =p(A,a,E) for all 

e 9'), which means tha t / ta (E)  _1_ #a(F). Similarly, for E~, E2 . . . .  with 
E~ 71E~ = ;~ for i # j we have p(A,~,EI U Ez U ...) = p(A,~,E~) + p(A,~, 
E~) + . . .  for all e e 5e, and consequently /za(E~ U E~ U ...) =/~a(E~) U 
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#A(E2) O. . . .  Thus PA is an L-valued measure. Note that it is the first time 
we have used the assumption that for each A e (9 and each ~ e 5 ~ the 
mapping E - +  p(A,  ~, E)  is a probability measure on 2(R).  The fact that 
(L,<, ' )  is an orthocomplemented partially ordered set with a full set of  
states (probability measures) {m~: a e 50} is a consequence of the ortho- 
gonality postulate only. 

The family of L-valued measures {#a: A e (r is surjective, since every 
member of L is of the form fA, E for some A and E. We also have 

m~, o tza(E) = m,,(fa,E) = fA, E(O0 = p(A,  a ,E )  

by the definition offa ,~ .  Hence the first part of the theorem is proved. 
To prove the converse, let (L ,<, ' )  be an arbitrary orthocomplemented 

partially ordered set admitting a full set of  probability measures S, and 
let d) be a surjective set of  L-valued measures. Let p(A,c~,E) = c~ o A(E)  
for all A ~ d), ~ ~ 50, and E ~ N(R). i t  is evident that p is a probability 
function. Let f l ,  f2 . . . .  be a sequence of  pairwise orthogonal experimental 
functions induced byp  wheref~ = f m , E c  Sincef~ +f~ < 1 for i # j ,  we have 
fa,  ~,(c~) +fA  s E (~) < 1 for all ~ ~ b ~ that is ~ o Ai(Ei) + o: o A~(Ej) < 1 

p , J . . 

for all ~. This implies ~ o A~(E 0 < ~ o A j ( R  - Ej) for all ~ ~ 50. Since 
50 is full, we infer that A,(E,) < (Aj(Ej))" in L. Hence AI(E~) U A2(Ez) U . . .  
exists in L and by the surjectivity of (9 A I ( E  0 U A2(E2) U ... = A(E)  for 
some A ~ 0 and E E N(R). This implies c~ o A~(EO + ~ o A2(E2) + . . .  = 

o A (E)  for all ~, that is ~ o A ( R  - E)  + ~ o AI(E~) + c~ o Az(E2) + . . .  = 1 
for all ~ ~50. This means that g + f l + f 2 +  . . . .  1 where g ( ~ ) = p ( A , a ,  
R - E) for all c~ ~ 50. H e n c e f l , f z  . . . .  is orthogonal in the sense &Definit ion 
1 and the orthogonality postulate holds. It is evident that the logic of p 
is isomorphic to L. This concludes the proof  of  the theorem. 

The theorem shows that the logic of a probability function is an ortho- 
complemented partially ordered set if and only if the orthogonality postulate 
holds. This explains why the structure of orthocomplemented partially 
ordered set is so basic and underlies all known physical theories. 

The orthogonality postulate corresponds to Axiom V of Mackey, which 
turns out to be the most essential in determining the structure of  our 
system. There are other assumptions usually made in axiomatic quantum 
mechanics as formulated by Mackey, namely: 1 o p(A,  ~, E )  = p(A' ,  c~, E)  
for all e and all E implies A = A' and similarly for states (Axiom II of 
Mackey), 2 o every L-valued measure corresponds to an observable (Axiom 
VI and implied by it Axiom III), 3 o the set of  all states is closed under 
taking convex combinations (Axiom IV), and 4 o for every f ~  L different 
from 0 there is c~ s 50 such that m ~ ( f )  = 1 (Axiom VIII). It is easy to see 
that even if these postulates do not hold they can be made to hold by 
introducing equivalence relations in the set of states and in the set of 
observables (Axiom II) and by suitable extensions of  the set of  states and 
the set of  observables (the remaining axioms with the possible exception 
of  Axiom VIII, but this one is used only after passing to Hilbert space to 
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show that every unit vector determines a pure state). Hence as far as the 
abstract structure of  axiomatic quantum mechanics is concerned, the 
orthogonality postulate is the most essential one. 

As we have mentioned in the introduction, to pass to the Hilbert space 
formalism of  quantum mechanics we have to assume that only L is iso- 
morphic to the lattice of  all closed subspaces of  a suitable Hilbert space. 
This is the so-called Hilbert space axiom of Mackey (Axiom VII). In this 
formulation this axiom can be given little direct physical motivation. 
However, as was shown in M~czyfiski (1972), Maekey's axiom system can 
be extended to include more assumptions about the probability function 
so that the Hilbert space axiom follows from postulates which admit more 
natural physical interpretation. 
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